Effect of impact assembly on the interface deformation and fretting corrosion of modular hip tapers: An in vitro study.
نویسندگان
چکیده
Wear and corrosion at the modular head-neck junction has been recognised to be a potential clinical concern, with multiple reports on adverse local tissue reactions and subsequent early failure of metal-on-metal hip replacements. Furthermore, reports on head-neck taper corrosion are also being described with conventional metal-on-polyethylene bearings. Manufacturing tolerances, surgical technique, non-axial alignment, material combination, high frictional torque and high bending moment have all been implicated in the failure process. There is limited guidance on the force of impaction with which surgeons should assemble modular hip prostheses. This study aims to investigate the effect of impaction force on the deformation and corrosion of modular tapers. Short neck tapers with high surface roughness (average Rz = 16.58 μm, Ra = 4.14μm) and long neck tapers with low surface roughness (average Rz = 3.82 μm, Ra = 0.81μm), were assembled with CoCrMo alloy heads (smooth finish) under controlled conditions with 2, 4 or 8 kN of impaction force. Material combinations tested included CoCrMo-head/CoCrMo-neck and CoCrMo-head/Ti-6Al-4V-neck. Assessment of surface deformation before and after impaction was made using surface profilometry. Measurement of fretting current during sinusoidal cyclic loading evaluated mechanically assisted corrosion for each assembly load during short-term cyclic loading (1000-cycles) and long-term cyclic loading (5 million-cycles). Deformation on head and neck tapers increased with assembly load. Fretting currents during short term simulation testing showed significantly lower currents (p < 0.05), in 8 kN assemblies when compared to 2 and 4 kN, especially for the short-rough tapers. Long-term simulator testing demonstrated a progressive reduction in fretting corrosion for samples impacted with 4 and 8 kN; however, this reduction was greater for samples impacted at 8 kN even at the start of testing. Based on our results, surgeons could minimise mechanically assisted crevice corrosion by using higher impact loads when assembling the head to the stem in total hip arthroplasty. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:405-416, 2018.
منابع مشابه
Enhanced Wear and Corrosion in Modular Tapers in Total Hip Replacement - An in-vitro biomechanical study
Introduction The use of large cobalt chrome femoral heads reduces dislocation and increases the range of motion. However, failure of large head metal on metal hip replacements (LHMMHR) has recently been identified and is believed to be associated with the high torque at the interface of standard modular taper junction leading to fretting and corrosion. Compared with standard 28 mm heads the rel...
متن کاملMechanically assisted taper corrosion in modular TKA.
The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.2 years of implantation. Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Design features and patient information were assessed as predictors of fretting corrosion da...
متن کاملEffect of Taper Design on Trunnionosis in Metal on Polyethylene Total Hip Arthroplasty.
This study examines how taper design affects corrosion and fretting at the head trunnion surface. All hip prostheses retrieved between 1999 and 2013 with 28mm/+0 heads were selected, resulting in 44 cobalt-chrome-on-polyethylene implants, representing six taper designs. Mean implantation time: 8.9±3.7years. The femoral head tapers were scored for fretting and corrosion using the Goldberg scale ...
متن کاملFretting and Corrosion Damage at the Head-Neck Taper is Reduced with Ceramic Femoral Heads: A Retrieval Study
Introduction: Modular head-neck total hip arthroplasty (THA) offers several benefits for orthopaedic surgeons, including intraoperative flexibility and the ability to change the head at revision surgery [1]. However, modularity at the head-neck taper, especially the use of metallic heads and stems, can lead to fretting and corrosion at the taper junction, leading to metal ions and debris releas...
متن کاملQuantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly force...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2018